Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data
نویسندگان
چکیده
One of the most important applications of gravity surveys in regional geophysical studies is determining the depth to basement. Conventional methods of solving this problem are based on the spectrum and/or Euler deconvolution analysis of the gravity field and on parameterization of the earth’s subsurface into prismatic cells. We have developed a new method of solving this problem based on 3D Cauchy-type integral representation of the potential fields. Traditionally, potential fields have been calculated using volume integrals over the domains occupied by anomalous masses subdivided into prismatic cells. This discretization can be computationally expensive, especially in a 3D case. The technique of Cauchy-type integrals made it possible to represent the gravity field and its gradients as surface integrals. In this approach, only the density contrast surface between sediment and basement needed to be discretized for the calculation of gravity field. This was especially significant in the modeling and inversion of gravity data for determining the depth to the basement. Another important result was developing a novel method of inversion of gravity data to recover the depth to basement, based on the 3D Cauchy-type integral representation. Our numerical studies determined that the new method is much faster than conventional volume discretization method to compute the gravity response. Our synthetic model studies also showed that the developed inversion algorithm based on Cauchy-type integral is capable of recovering the geometry and depth of the sedimentary basin effectively with a complex density profile in the vertical direction.
منابع مشابه
3-D Cauchy-type integrals for terrain correction of gravity and gravity gradiometry data
S U M M A R Y Fundamental to complex analysis is the Cauchy integral theorem, and the derivation of Cauchytype integrals. For over 40 yr, Cauchy-type integrals have been used to describe analytical continuation, establish the location of singular points, and study non-single-valued solutions of inverse problems in 2-D potential field theory. In this paper, we revive this interesting and fundame...
متن کامل3D gravity data-space inversion with sparseness and bound constraints
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes ...
متن کامل2D inversion of gravity data in bedrock identification (case study: a part of Qotrum plain in Yazd province)
Introduction The gravity method measures the vertical component of the acceleration at the Earth’s surface. The earth’s gravity field is affected by the density of different rocks and structures. Therefore, this method can be used in mineral exploration or studying the subsurface cavities and structures such as bedrocks, channels, and dikes. Inverse modeling is useful in understanding the p...
متن کاملNon-linear stochastic inversion of regional Bouguer anomalies by means of Particle Swarm Optimization: Application to the Zagros Mountains
Estimating the lateral depth variations of the Earth’s crust from gravity data is a non-linear ill-posed problem. The ill-posedness of the problem is due to the presence of noise in the data, and also the non-uniqueness of the problem. Particle Swarm Optimization (PSO) is a stochastic population-based optimizer, originally inspired by the social behavior of fish schools and bird flocks. PSO is ...
متن کاملA method for 2-dimensional inversion of gravity data
Applying 2D algorithms for inverting the potential field data is more useful and efficient than their 3D counterparts, whenever the geologic situation permits. This is because the computation time is less and modeling the subsurface is easier. In this paper we present a 2D inversion algorithm for interpreting gravity data by employing a set of constraints including minimum distance, smoothness,...
متن کامل